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Calculation of chromatographic band profiles with an implicit
isotherm
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Abstract

The numerical method for solving the mathematical model of chromatography process coupled with implicit isotherm has
been proposed. The exemplary predictions of elution band profiles were performed for competitive adsorption data of
2-phenylethanol and 3-phenylpropanol on ODS-silica with methanol–water as the mobile phase. The simulations of
chromatography process with various isotherm models taking into account lateral interactions in adsorbed phase and surface
heterogeneity were discussed.  1999 Elsevier Science B.V. All rights reserved.
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1. Introduction assume an ideal system behaviour and in some cases,
especially of multicomponent systems in strongly

Determination of an isotherm equation that de- overloaded preparative chromatography, are unable
scribes the distribution between mobile and station- to properly predict the separation process. Other
ary phase has fundamental importance in the studies models, like the Fowler–Guggenheim [1], take into
of adsorption-based separation process. Mathemati- account the possibility of adsorbate–adsorbate inter-
cal adsorption models based on mass balance equa- actions in adsorbed phase or surface heterogeneity as
tions of compounds separated, coupled with isotherm the bi-Langmuir, Freundlich and the more complex –
equations, permit one to simulate the adsorption Jovanovic–Freundlich [2]. The most sophisticated
process. The adequate isotherm model allows the isotherms account for lateral interactions and surface
possibility of accurate prediction of elution band heterogeneity – Fowler–Guggenheim/Langmuir–
profiles under various operating conditions and al- Freundlich,Fowler–Guggenheim/Jovanovic–Freund-
lows optimisation of the separation process. lich [3,4]. As evidenced in Ref. [4] the multicom-

A number of isotherm models are used to correlate ponent isotherms considering both lateral interactions
the single-component and competitive adsorption and surface heterogeneity better describe competitive
data. Some of them, like the Langmuir isotherm, adsorption data. Additionally, these models are pure-

ly predictive – and are based solely on single
component parameters. The parameters of isotherm*Corresponding author.

E-mail address: ichkk@ewa.prz.rzeszow.pl (K. Kaczmarski) equations are determined by fitting the model to the
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experimental adsorption data of single components. Freundlich (FG/LF) and Fowler–Guggenheim/
The isotherm equations mentioned above include Jovanovic–Freundlich (FG/JF) [4].

complex implicit functions of the adsorbed phase The competitive isotherm model FG/LF is ex-
concentration. Their application for simulation of pressed by following set of equations:
band profiles was practically impossible until now x u 1x u1 1 12 2u 5 a C e1 1 1because, as was stated in Refs. [4–6], numerical

x u 1x u x u 1x u n 211 1 12 2 21 1 2 2 1inversion of implicit isotherm prohibitively increases a C e 1 a C ef g1 1 2 2
]]]]]]]]]]]]3 nx u 1x u x u 1x u 1the calculation time. In this paper we propose the 1 1 12 2 21 1 2 21 1 a C e 1 a C eh f g j1 1 2 2numerical method for solving the chromatography

(1)column model with an isotherm accounting for
lateral interaction and surface heterogeneity in

x u 1x u21 1 2 2u 5 a C e2 2 2reasonable computational time.
x u 1x u x u 1x u n 211 1 12 2 21 1 2 2 2a C e 1 a C ef g1 1 2 2

]]]]]]]]]]]]3 nx u 1x u x u 1x u 21 1 12 2 21 1 2 21 1 a C e 1 a C eh f g j1 1 2 2

2. Theory (2)

where n is the heterogeneity parameter (with 0,n ,

1). The parameters x and x relate to the energy of1 22.1. Isotherm models
lateral interaction between molecules of corre-
sponding components. Parameters x and x ac-21 12The numerical method described in next section
count for the cross interaction between separatedwas used for simulations of the elution band profiles
components. u is fractional coverage of ith com-iof 2-phenylethanol and 3-phenylpropanol on ODS-
ponent: u 5q /q , q is the total coverage, C , thei i is is isilica with methanol–water as the mobile phase.
component concentration in the bulk phase.Competitive adsorption data were reported in Ref.

The competitive FG/JF model consists of equa-[5] and tested for various isotherm models in Refs.
tions:[4,7]. On the basis of regression analysis of ad-

nx u 1x u x u 1x u 11 1 12 2 21 1 2 2sorption data reported in Ref. [4] we decided to 2 a C e 1a C ef g1 1 2 2h ju 5 F 1 2 e (3)1 1examine the isotherm equations that exhibited the
nx u 1x u x u 1x u 2highest value of the Fisher parameter [4]: 1 1 12 2 21 1 2 22 a C e 1a C ef g1 1 2 2h ju 5 F 1 2 e (4)2 2

n
where:] 2(n 2 l)O q 2qs dexp,i exp

x u 1x ui51 1 1 12 2a C e]]]]]]]F 5 1 1ncalc ]]]]]]]]]F 51 x u 1x u x u 1x u1 1 12 2 21 1 2 22 a C e 1 a C e(n 2 1)O q 2 qs d 1 1 2 2exp,i calc,i
i51

x u 1x u21 1 2 2a C e2 2
]]]]]]]]]F 5where q represents the vector of experimental 2 x u 1x u x u 1x uexp,i 1 1 12 2 21 1 2 2a C e 1 a C e1 1 2 2adsorbed phase concentration, q , the vectorcalc,i

]]predicted by model, q , the mean value of vector Ignoring the lateral interaction in Eqs. (3) and (4)exp,i

q , n, the number of data points, l, the number of one can obtain the Jovanovic–Freundlich (JF)exp,i

adjusted parameters. Since the denominator contains model:
residual sum of squares, the higher the value of the

a C n1 1 2 a C 1a C 1s d1 1 2 2Fisher parameter the better the experimental data are ]]]]u 5 f1 2 e g (5)1 a C 1 a C1 1 2 2correlated.
The highest F values were achieved for thecalc a C n2 2 2 a C 1a C 2s d1 1 2 2]]]]u 5 f1 2 e g (6)most complex isotherms that take into account both 2 a C 1 a C1 1 2 2lateral interaction in adsorbed phase and hetero-

Similarly, neglecting surface heterogeneity in Eqs.geneity of surface: Fowler–Guggenheim/Langmuir–
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(1) and (2) the Fowler–Guggenheim (FG) model can 2.2. Method of calculation
be derived:

For simulation of chromatography column dy-
u namic the following model was used:1 2 x u 1x us d1 1 12 2]]]K C 5 e (7)1 1 1 2u 2u 21 2

≠C 1 2 e ≠q ≠C ≠ Cui t i i i
] ]]] ]] ]]1 1 5 D (9)a 2≠t e ≠t e ≠x ≠xt tu2 2 x u 1x us d21 1 2 2]]]K C 5 e (8)2 2 1 2u 2u where: t is the time, e , the total porosity, u, the1 2 t

superficial velocity, x, the axial coordinate, D , thea
All the aforementioned models were solved with apparent dispersion coefficient calculated from the

numerical methods discussed below. The isotherm equation D 5u*L /(2*N*e ), N, the number of theo-a t
parameters presented in Table 1 were applied as in retical plates, L, the column length, i51,..,NC, and
Ref. [4]. NC, the number of components.

Eq. (9) was solved using two methods: (a) ortho-
Table 1 gonal collocation on finite element (OCFE), (b) finite
Results of regression analysis [4] difference (FD) with typical initial conditions:
Model Parameter Fcalc for t 5 0; 0 , x , L, C 5 0, q 5 0 (10)i i
Model FG/FL q 559 136.26s1

Eqs. (1) and (2) a 50.036961 In the case of the OCFE method, Danckwerts
x 50.91261 boundary conditions were used: for t.0; x50:n 50.98651

≠Cq 5112 is2 9 ] 9u*C 2 u*C (0) 5 2 D ; Cfi i a f i≠xa 50.024242

x 51.4174 C for t [ (0,t )2 f i p
n 50.8251 5 (11)H2 0 for t . tp

Model FG/JF q 542 134.66s1 for t.0; x5L:Eqs. (3) and (4) a 50.052921

x 50.4122 ≠C1 i
]5 0 (12)n 50.9881 ≠x

q 583s2

a 50.03591 where C denotes the inlet concentration of com-2 f i
x 50.66722 ponent number i, t is time during the constantp
n 50.8322 concentration C is fed into the column.f

In the high-performance liquid chromatographyModel JF q 574 85.53s1

(HPLC) column case Danckwerts conditions (Eq.Eqs. (5) and (6) a 50.0291

n 51.0 (11)) are often replaced with the simpler:1

q 5126s2

C for t [ (0,t )a 50.02781 f i p2
9 9C (0) 5 C ; C 5 (11a)Hn 50.891 i f i f i2 0 for t . tp

Model FG q 575 69.2s1 Eq. (11a) was applied in this work for solving
Eqs. (7) and (8) K 50.030471 mass balance (Eq. (9)) with the FD method.

x 50.64341
If the rate of adsorption–desorption process isq 5316s2

assumed infinitely fast, Eq. (9) is coupled with theK 50.01532

x 522.037 appropriate isotherm equation:2

Competitive Langmuir q 5154 22.99 q 5 f(C) (13)s1 i
K 50.0151

or for the implicit equation:q 5134s2

K 50.0352 f(C,q) 5 0 (13a)
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where C and q are vectors of concentration of the 0 5 S , S , . . . .. , S , S 5 L (17)0 1 NS21 NS

components in bulk and stationary phases, respec-
tively. At any given time the solution is approximated in

The set of Eqs. (9) and (13) is known as the each k subdomain (S 2S ) by a suitable polyno-k21 k
k k kequilibrium-dispersive model. mial function C (r , t), where r is a local space

Differential mass balance (Eq. (9)) can be re- variable in subdomain k, k51,..,NS.
written to more convenient for the solution form. The width of the subdomain is:
Taking into account that the time derivative ≠q /≠t isi

equal to: D 5 S 2 S (18)k k k21

NC
k≠q ≠q ≠Ci i m and the space variable r is defined as follows:] ]]]]5O (14)

≠t ≠C ≠tmm51

x 2 Sk21k k]]]r 5 ; r [ [0, 1] (19)Eq. (9) can be expressed as follows:
Dk

2NC≠C 1 2 e ≠q ≠C ≠C ≠ Cui t i m i i For each subdomain k number N(k) of interior] ]] ]]]] ]] ]]1 O 1 5 D (15)a 2≠t e ≠C ≠t e ≠x ≠xt m tm51 collocation points is chosen as the roots of the Jacobi
abpolynomial P [8] with a 5b 50 and the approxi-N(k)When the kinetics of the adsorption–desorption

mate solution is represented in terms of the Lag-process are finite, Eq. (9) is solved with the appro-
range’s interpolation formula:priate kinetic model:

N(k)11≠qi k k k k k]5 g(C, q) (16) C (r , t) 5 O C (t)*l (r ) (20)j j≠t
j50

Eqs. (9) and (16) constitute the reaction-dispersive
k kwhere l (r ) is Lagrange polynomial of order N(k)1jmodel.

k k k2 with the base point h0,r ,..,r , 1j and C (t)51 N(k) j
k kC (r , t) are the N(k)12 unknown time dependentj2.2.1. The OCFE method parameters to be evaluated in order to fully define

The method of solving differential equations using k kthe approximating polynomial C (r , t) in each kth
orthogonal collocation (OC), introduced by Villadsen element.
and Michelsen [8] and regarded as one of the most Because the discretization procedure described
accurate, was successfully applied in modelling above must be applied to the unknown fluid phase
chemical engineering processes. In the case of concentration C , i51,..,NC for each subdomain k5iHPLC, a modified version of OC on finite elements NS1,..,NS, we obtain NC*o [N(k)12] unknown pa-k51is used in a number of works, e.g., Refs. [9,10]. OC NSrameters. The o N(k) parameters are calculated byk51was also applied and successfully implemented in a integrating the following system of ordinal differen-
moving finite elements version for modelling multi- tial equations, which enforce the fulfilment of Eqs.
component fixed-bed adsorption and chromatography (9) or (15) in the internal collocation points within
[11,12]. each subdomain:

Although the technique of orthogonal collocation
k k N(k)11on finite elements is well known, we briefly describe ≠C ≠q1 2 e uij ijt k k]] ]]] ]]it. Further details can be found in Ref. [11]. 1 5 2 O A Cjm im≠t e ≠t e Dt t k m50

N(k)11
12.2.1.1. The OCFE method technique k k]1 D O B C ; ia 2 jm imThe technique of orthogonal collocation on fixed D m50k

finite elements involves the division of space coordi-
5 1,..,NC; j 5 1,..,N(k); knate x into the NS subdomain whose boundaries

fulfil the inequalities 5 1,..,NS (21)
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k k kNC (23–26) was solved with Adams–Moulton method≠C ≠q ≠C1 2 e uij ij mjt
]] ]] ]]]] ]]1 O 5 2 implemented in VODE procedure [13].k≠t e ≠t e D≠Ct t km51 mj The derivatives ≠q /≠C were calculated analyti-i m

N(k)11 N(k)11 cally for explicit isotherms equation and numerically1k k k k]3 O A C 1 D O B C ; for implicit isotherm equations. In order to determinejm im a 2 jm m
Dm50 m50k surface concentration q , the set of nonlinear alge-i

i 5 1,..,NC; j 5 1,..,N(k); k 5 1,..,NS (22) braic equation defining implicit isotherm models
were solved with the BUNLSI procedure [14].

Next NC*NS*2 parameters are obtained from
boundary conditions (Eqs. (11) and (12)): for x50, 2.2.1.3. The OCFE solution – kinetic method
k51: We can start defining the kinetic method applied in

N(1)11 this work from analysing the equilibrium-dispersive11 1 1] and the reaction-dispersive model with a simple9uC 2 uC (0) 5 2 D O A C ;fi i a om imD1 m50 Langmuir isotherm and a second-order Langmuir
i 5 1,..,NC (23) kinetic equation, respectively.

The equilibrium-dispersive model for single com-for x5S , k5NS:NS ponent Langmuir isotherm can be rewritten as fol-
N(NS)11 lows:1 NS NS]] O A C 5 0; i 5 1,..,NC (24)N(NS)11,m im 2DNS m50 ≠C u ≠C ≠ C

] ]]]]]] ] ]]1 5 D (30)a 2≠t 1 2 e ≠x≠q ≠xtand from continuity of the solution and the first-order
]]]e 1 1S Dt e ≠Cspace derivative at the boundary between two neigh- t

bouring subdomains: for x5S ; k51,..,NS21k *q K*Cs
]]]q 5 f(C) 5 (31)k k11 1 1 K*CC 5 C ; i 5 1,..,NC (25)i,N(k)11 i,0

while the reaction-dispersive is in the form:and
2

N(k)11 N(k11)11 1 2 e≠C ≠q u ≠C ≠ Ct1 1 ] ]]] ]] ]]k k k11 k11 1 1 5 D (32)a 2] ]]O A C 5 O A C ; ≠t e ≠t e ≠xN(k)11,m im 0,m im ≠xt tD Dk k11m50 m50

≠qi 5 1,..,NC (26) ] * *5 g(C,q) 5 k C*(q 2 q) 2 k q (33)a s d≠t

In Eqs. (21–26) A and B are equal: or using the equilibrium isotherm Eq. (31):

k *q K*C≠q≠l smk ] S]]] D*5 k 2 q *(1 1 K*C)]A 5 (27)S D djm k ≠t 1 1 K*Cr 5r≠r j

*5 k f(C) 2 q *(1 1 K*C) (34)s dd2 k
≠ lmk ]]B 5 (28)S D where: k and k are the rate constants of desorptionjm k2 d ar 5r≠r j

and adsorption.
The set of discretized equations was solved using From the mathematical point of view, solutions of

two different ways: firstly by the following equilib- the models expressed by Eqs. (30) and (31) and (32)
rium method and secondly by the kinetic method. and (34) are equivalent when k is infinitely high.d

However, both models coincide for finite, a relatively
2.2.1.2. The OCFE solution – equilibrium method low value of k equals about several tens ford

In fact, the equilibrium method is a classical overload conditions or low efficiency column. More-
method commonly used. The set of ordinal differen- over, if k is sufficiently high, the last term in Eq.d

tial Eq. (22) obtained after discretization of partial (34) equal to (11K*C) has no influence on calcula-
differential Eq. (15), together with algebraic Eqs. tion results.
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n11 nIt suggests that the solution of the equilibrium- q 2 qi, j i, j
]]]dispersive model with any implicit adsorption iso-

Dt
therm (Eq. (13a)), rewritten as q 5f(C,q), can bei n n n n n

5 p* f(C , . . . ,C , q , . . . ,q ) 2 q ;f g1, j NC, j 1, j NC, j i, japproximated by solution of the model similar to
reaction-dispersive one composed of Eqs. (9) and i 5 1,..,NC (38)
(16a):

where j is the index of the nodal point and n is the
index of the time interval.≠qi

]5 p* f(C,q) 2 q (16a)f gi In the finite difference approximation of Eq. (9)≠t
the dispersion term is usually ignored. The effect of

with sufficiently high value of parameter p. Note, band broadening due to dispersion is approximated
that however parameter p has dimension (1 /s), it has by appropriate choosing of space and time incre-
not generally a physical meaning. ments [6]. Moreover, time increment should fulfil

In the following we call the proposed method the stability conditions. In monograph [6] the stability
kinetic method. conditions for different finite difference schemes in

After discretization due to the OCFE method, the linear chromatography were formulated, however,
set of partial differential Eq. (9) is reduced to the set numerical stability conditions for finite difference
of ordinal differential Eq. (21) while the set of Eq. scheme (Eqs. (37) and (38)) is unknown.
(16a) to: In this work, for calculation of the space interval a

typical condition, Dx5height equivalent to a theoret-
k

≠qij ical plate (HEPT), was applied [6]. The time intervalk k k k k]5 p* f(C ,...C , q ,...,q ) 2 q ;f g1j NCj 1j NCj ij≠t Dt was calculated from following relationship:

i 5 1,...NC; j 5 1,...,N(k); k 5 1,...NS (36) 1
]]Dt 5 (39)p*b

Eqs. (21) and (36) and (23–26) were solved using
with b$3, stability of the differential scheme (Eqs.the VODE procedure.
(37) and (38)) was achieved in any investigatedNote, that in case of kinetic method – Eqs. (21)
bellow case. Thus, in the following b53 was appliedand (36) – the time consuming, numerical solving of
for all simulations under discussion.nonlinear algebraic equations due to implicit iso-

Generally the value of parameter b should betherm equation is avoided.
established with the trial and error method.

2.2.2. Finite difference method
The kinetic method described in Section 2.2.1.3 3. Validation and comparison of the methods

was also implemented for the FD method. The FD proposed
method is less robust than the OCFE one but in case
of isotherm accounting for surface heterogeneity can In all the following simulations the process con-
be several times faster. Besides, it involves very ditions were assumed as: column length L50.1 m,
simple integration algorithm. total porosity e 50.8, mobile phase velocity (superfi-t

In order to solve Eqs. (9) and (16a) the well cial velocity) u50.0012 m/s. Value of isotherm
known forward–backward finite difference scheme parameters, according to Ref. [4], are presented in
was applied: Table 1.

In the case of the OCFE method the number of
n11 n n nC 2 C C 2 C 1 2 eu internal collocation points inside subdomain wasi, j i, j i, j i, j21 t

]]]] ]]]]] ]]1 1 *p* equal 3. Number of subdomain NS was equal NS5Dt e Dx et t

10, 50, 200 and 600 for number of theoretical platesn n n n n
3 f(C , . . . ,C , q , . . . ,q ) 2 q 5 0;f g1, j NC, j 1, j NC, j i, j equal N5100, 500, 3000 and 10 000, corresponding-

i 5 1,..,NC (37) ly.
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The calculations were performed on Pentium II achieved for higher value of parameter p, e.g., when
350 MHz personal computer. N53000, p should be equal 2000.

Both method OCFE and FD preserve the mass It is possible to arbitrarily choose a very high p
balance well. In our calculations the relative error of value to be sure that it is appropriate for all process
mass balance fulfilment was less than about 0.1%. conditions, however the time of calculation increases

with increasing p value. Thus, if simulations are
3.1. Validation of kinetic method – OCFE solution supposed to be repeated many times it is more

convenient to determine an adequate value of param-
To validate the kinetic method we compared eter p after several trial computations.

solutions of Model (9), coupled with the Langmuir In Figs. 4 and 5 the comparison of the equilibrium
competitive isotherm, using equilibrium and kinetic and kinetic methods for FG isotherm is presented.
methods. The loading factor is equal to 6%. Calculation times

In Figs. 1–3 the comparison of simulations of the are given in Table 2. The peak profiles obtained with
band profiles for linear chromatography (loading both methods coincide for parameter p greater than
factor equal 0.084%) and strong overload conditions about 100. In this case, time of calculation with the
(loading factor equal 50%) is presented. Times of equilibrium method is remarkably longer compared
calculations are given in Table 2. to the kinetic one. Rapid increase of computation

As can be seen, for the low performance column time with the use of the equilibrium method for the
or strong overload conditions differences between FG isotherm is a consequence of necessity of solving
solutions are negligible for parameter p greater than implicit isotherm equations in order to calculate
about 10. At p550, the equilibrium and kinetic adsorbed phase concentration q .i
methods give practically the same results. For high- Because of the very long CPU time the equilib-
performance linear chromatography and a low value rium method discussed cannot be used for solving
of loading factor, equivalence between solutions is more complex implicit isotherms including surface

Fig. 1. Comparison of simulations of the band profiles with Langmuir competitive isotherm. Solid lines: solution using equilibrium method.
Dotted lines: solutions using kinetic method for coefficient p510. For p550 solution of both methods are undistinguished. The inlet
concentration: C 5C 51 mg/ml, injection time51 s, N5100.1 2
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Fig. 2. Comparison of simulations of the band profiles with Langmuir competitive isotherm. Solid lines: solution using equilibrium method.
Dotted lines: solutions using kinetic method for coefficient p5100, dashed p5500. For p52000 solution of both methods are
undistinguished. The inlet concentration: C 5C 51 mg/ml, injection time51 s, N53000.1 2

Fig. 3. Comparison of simulations of the band profiles with Langmuir competitive isotherm. Solid lines: solution using equilibrium method.
Dotted lines: solutions using kinetic method for coefficient p510. For p550 solution of both methods are undistinguished. The inlet
concentration: C 5C 530 mg/ml, injection time520 s, N510 000.1 2
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Table 2
Comparison of CPU times for tested methods: equilibrium method (EM), kinetic method (KM), finite difference method FD

Langmuir isotherm

Feed concentration C 5C 51 mg/ml, injection time51 s Feed concentration C 5C 530 mg/ml, injection1 2 1 2

time520 s

N EM KM N EM KM

t p (1 / s) t t p (1 / s) t

100 2 s 10 8 s 100 2 s 10 11 s
50 34 s 50 37 s

500 12 s 10 29 s 500 18 s 10 29 s
50 2 min 15 s 50 2 min 9 s

100 4 min 41 s 3000 7 min 57 s 10 4 min 41 s

3000 7 m 43 s 100 19 min 22 s 50 15 min 33 s
500 3 h 49 min 10 000 23 min 58 s 10 26 min 18 s

2000 6 h 24 min 50 30 min 33 s

FG isotherm FG/JF isotherm

N EM p (1 / s) KM FD N p (1 / s) KM FD
t t t t t

100 2 min 10 s 10 10 s – 100 10 52 s –
50 51 s – 50 4 min –

100 1 min 23 s 29 s 100 7 min 20 s 53 s

500 9 min 58 s 10 42 s – 500 10 3 min 23 s –
50 3 min 3 s – 50 12 min 37 s –

100 5 min 54 s 2 min 23 s 100 24 min 31 s 4 min 20 s

3000 1 h 25 min 10 s 10 2 min 29 s – 3000 10 13 min 28 s –
50 10 min 42 s – 50 1 h 27 min –

100 21 min 18 s 14 min 100 3 h 15 min 26 min 57 s

heterogeneity parameter. In our numerical test with 4. Simulations for the selected isotherms
the equilibrium method for FG/JF or FG/FL iso-
therms the calculations have been interrupted after As mentioned before, solutions obtained with the
24 h without getting peak profiles. kinetic and the equilibrium methods are fully equiva-

lent, provided the parameter p ranges from 50 to 100
(except for linear chromatography; see Section 3.1).

3.2. Comparison of the OCFE and FD methods Further increase of the p value exerts no perceptible
impact on the band shapes for any isotherm model

The time of calculation with the OCFE method, investigated in this paper. In the simulation discussed
especially for implicit isotherm accounting surface we assumed p5100 and the number of theoretical
heterogeneity such FG/JF and FG/FL, is relatively plates as equal to 3000. Calculations were performed
long – see Table 2. CPU time can be reduced from with aid of the OCFE and FD methods. With both
two-fold (FG isotherm) to about six-times (FG/JF methods, the obtained peak profiles were exactly the
and FG/FL isotherms) when the FD method pro- same.
posed above is applied. The simulations performed The results of simulations of the elution band
with OCFE and FD give the undistinguished results profiles, obtained for the isotherm models exhibiting
– see Figs. 6 and 7. the highest Fisher parameter (i.e., for FG/LF, Eqs.
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Fig. 4. Comparison of simulations of the band profiles with FG isotherm. Solid lines: solution using equilibrium method. Dotted lines:
solutions using kinetic method for coefficient p510, dashed lines p550. For p5100 solution of both methods are undistinguished. The inlet
concentration: C 5C 56 mg/ml, injection time510 s, N5100.1 2

Fig. 5. The same as Fig. 4, but N53000.
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Fig. 6. Comparison of simulations of the band profiles with FG/JF isotherm using OCFE and FD kinetic method. Dotted lines: coefficient
p510, solid lines p550 and p5100. The inlet concentration: C 5C 530 mg/ml, injection time520 s, N5100.1 2

(1) and (2), and for FG/JF, Eqs. (3) and (4) are The results of calculations with use of the both
valid, see also Table 1), are presented in Figs. 8 and isotherm models are similar to one another. Because
9. of the relatively high surface heterogeneity predicted

Fig. 7. The same as Fig. 6, but N53000.
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Fig. 8. Comparison of the band profile predicted with FG/LF (solid) and FG/JF (dotted). Feed concentrations ratio: 1:3, total mobile phase
concentration: 12 mg/ml, injection time: 10 s.

for the second component (see Table 1), the peak feed concentrations C 5C 5 1 and C 5C 5 0.11 2 1 2

profile of this component exhibits a strong tailing. mg/ml are presented). Moreover, a significant shift
Such phenomena appear in the case of very low of the retention time can be observed with the
sample concentrations also (as shown in Fig. 10, decreasing feed concentration of the second com-
where simulations with the FG/JF isotherm for the ponent. These phenomena result from the very nature

Fig. 9. Similar to Fig. 8, but feed concentrations ratio: 1:1.
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Fig. 10. Prediction of the band profile with FG/JF model. Feed concentrations C 5C 51 and C 5C 50.1, injection time: 10 s.1 2 1 2

face heterogeneity, the more pronounced the de-of the heterogeneous model, in which the derivatives
scribed phenomenon. In spite of a very low con-≠q /≠C describing retention time of the components
centration, which suggests the linear range of thetend to infinity for the infinitely low feed con-

≠q common isotherms, the Gaussian peak profile was]Ucentration, i.e., → `. The greater the sur-
≠C C→0 not recorded.

Fig. 11. Comparison of the band profile prediction with JF model (solid) and FG/LF (dotted). Feed conditions as in Fig. 8, but
concentration ratio51:1.
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Fig. 12. The comparison of the band profile prediction with FG model (solid) and Langmuir competitive isotherm model (dotted). Feed
conditions as in Fig. 8.

Similar behaviour is predicted by the Jovanovic– heterogeneity predicted by this model is lower than
Freundlich model (Eqs. (5) and (6)), devised for the that predicted by the FG/LF and FG/JF models, the
cases of surface heterogeneity and characterised by a observed peak tailing is less considerable (see Fig.
relatively high Fisher parameter (see Table 1). As the 11). Distance between the band profiles of the two

Fig. 13. The comparison of of the band profile prediction with FG model (solid) and Langmuir competitive isotherm model (dotted). Feed
conditions as in Fig. 8, but concentration ratio51:1.
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components simulated with aid of the JF model • C, C, component concentration or vector of
increases as a result of neglecting the attractive components concentration in bulk phase, respec-
adsorbate–adsorbate interactions. tively

The aforementioned significant growth of the • D , apparent dispersion coefficienta

retention time with the decreasing concentration of • F, Fisher parameter
the second component disappears for the isotherm • k, subdomain index
models neglecting surface heterogeneity (such as, • K, equilibrium constant
e.g., the FG model). In Figs. 12 and 13, the results of • k , k , rate constants of desorption and adsorption,d a

the band profile simulation with use of the FG model respectively
are compared with those resulting from the simple • l, Lagrange polynomial or number of adjusted
Langmuir competitive model. Differences between parameters
simulations for the first component are caused by the • L, column length
attractive lateral interactions, recognised within the • n, number of data points
framework of the FG model. • N, number theoretical plates

• N(k), number of interior collocation points in k
subdomain

5. Conclusion • NC, number of components
• NS, number of subdomains

The numerical kinetic method for solving mathe- • p, parameter introduced in Eq. (16a)
abmatical model of chromatography process coupled • P , Jacobi polynomialN(k)

with implicit isotherm models has been proposed. • q, q, adsorbed phase concentration or vector of
The method was implemented in orthogonal colloca- adsorbed phase concentrations, respectively
tion and finite difference forward–backward algo- • q , total coverages

rithm. The accuracy of method was compared with • S , ith boundary of subdomaini

the classical equilibrium method. • t, time
The equilibrium method has proved to be not • t , time during the constant concentration is fedp

robust, the calculation times were always remarkably into column
greater in comparison with the kinetic method. • u, superficial velocity
Moreover, for isotherms accounted surface hetero- • x, axial coordinate
geneity computation time was prohibitively long.

The kinetic method, derived from the kinetic
6.1. Greek letters

model, was successfully examined for five different • x, energy of lateral interaction between molecules
isotherms, low- and high-performance columns in • e , total porositytanalytical as well as overload conditions. Calculation • n, heterogeneity parameter
time with the kinetic method combined with finite • u 5q /q , fractional coverage of ith componenti i isdifference algorithm was relatively low and was • r, local space variable
equal for the most sophisticated FG/JF and FG/FL • D, width of the subdomain
isotherms about 1 min at 100 theoretical plates and • Dt, time interval
30 min at 3000 theoretical plates. • Dx, space interval

The kinetic method is supposed to enable simula-
tion of chromatography column processes for any
implicit isotherm. It can be also easily implemented 6.2. Subscripts
in more complex chromatography models. • calc, calculated value

• exp, experimental value
• f, inlet value

6. List of symbols • i, component index
• a, isotherm parameter • j, index of nodal point
• b, parameter introduced in Eq. (39) • k, subdomain index
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